
Add to Cart
N Type , Semi-Conducting Indium Phosphide Wafer , 4”, Prime Grade
PAM-XIAMEN provides single crystal InP(Indium phosphide) wafer for micro-electronic ( HBT/ HEMT ) and opto-electronic industry ( LED / DWDM / PIN / VCSELs ) in diameter up to 6 inch. Indium phosphide ( InP ) crystal is formed by two elements , Indium and Phosphide , growth by Liquid Encapsulated Czochralski ( LEC ) method or VGF method . InP wafer is an important semiconductor material which have superior electrical and thermal properties, InP wafer has higher electron mobility, higher frequency, low power consumption , higher thermal conductivity and low noise performance . PAM-XIAMEN can provide epi ready grade InP wafer for your MOCVD & MBE epitaxial application .Please contact our engineer team for more wafer information.
N Type, Indium Phosphide Wafer, 4”, Prime Grade
4"InP Wafer Specification | ||||
Item | Specifications | |||
Conduction Type | N-type | N-type | ||
Dopant | Undoped | Sulphur | ||
Wafer Diameter | 4" | |||
Wafer Orientation | 100±0.5° | |||
Wafer Thickness | 600±25um | |||
Primary Flat Length | 16±2mm | |||
Secondary Flat Length | 8±1mm | |||
Carrier Concentration | ≤3x1016cm-3 | (0.8-6)x1018cm-3 | (0.6-6)x1018cm-3 | N/A |
Mobility | (3.5-4)x103cm2/V.s | (1.5-3.5)x103cm2/V.s | 50-70cm2/V.s | >1000cm2/V.s |
Resistivity | N/A | N/A | N/A | >0.5x107Ω.cm |
EPD | <1000cm-2 | <1x103cm-2 | <1x103cm-2 | <5x103cm-2 |
TTV | <15um | |||
BOW | <15um | |||
WARP | <15um | |||
Laser Marking | upon request | |||
Suface Finish | P/E, P/P | |||
Epi Ready | yes | |||
Package | Single wafer container or cassette |
As we touched on in the introduction, Indium Phosphide is a semiconductor made of indium and phosphorus. It is used in high power and high-frequency electronics and has a high electron velocity. In fact, the electron velocity of InP is significantly higher than other more common semiconductors such as Silicon and Gallium Arsenide. It is also found in opto-electronic devices such as laser diodes.
![]() | The dependence of ionization rates for electrons αi and holes βi versus 1/F, 300 K. (Cook et al. [1982]). |
![]() | Breakdown voltage and breakdown field versus doping density for an abrupt p-n junction, 300 K (Kyuregyan and Yurkov [1989]). |
Spectroscopic Sensing aiming environmental protection and identification of dangerous substances
• A growing field is sensing based on the wavelength regime of InP. One example for Gas Spectroscopy is drive test equipment with real-time measurement of (CO, CO2, NOX [or NO + NO2]).
• Another example is FT-IR-Spectrometer VERTEX with a terahertz source. The terahertz radiation is generated from the beating signal of 2 InP lasers and an InP antenna that transforms the optical signal to the terahertz regime.
• Stand-Off detection of traces of explosive substances on surfaces, e.g. for safety applications on airports or crime scene investigation after assassination attempts.
• Quick verification of traces of toxic substances in gases and liquids (including tap water) or surface contaminations down to the ppb level.
• Spectroscopy for non-destructive product control of e.g. food (early detection of spoiled foodstuff)
• Spectroscopy for many novel applications, especially in air pollution control are being discussed today and implementations are on the way.
PAM-XIAMEN is your go-to place for everything wafers, including InP wafers, as we have been doing it for almost 30 years! Enquire us today to learn more about the wafers that we offer and how we can help you with your next project. Our group team is looking forward to providing both quality products and excellent service for you!